Source code for xorbits._mars.tensor.base.searchsorted

# Copyright 2022-2023 XProbe Inc.
# derived from copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
from typing import Any, List, Tuple, Type

import numpy as np

from ... import opcodes as OperandDef
from ...config import options
from ...core import TILEABLE_TYPE
from ...core.operand import OperandStage
from ...serialization.serializables import AnyField, Int32Field, Int64Field, StringField
from ...typing import ChunkType, TileableType
from ...utils import has_unknown_shape
from ..array_utils import as_same_device, device
from ..core import TENSOR_TYPE, TensorOrder
from ..datasource.array import tensor as astensor
from ..operands import TensorOperand, TensorOperandMixin


class TensorSearchsorted(TensorOperand, TensorOperandMixin):
    _op_type_ = OperandDef.SEARCHSORTED

    v = AnyField("v")
    side = StringField("side")
    combine_size = Int32Field("combine_size")
    # for chunk
    offset = Int64Field("offset")
    size = Int64Field("size")
    n_chunk = Int64Field("n_chunk")

    def _set_inputs(self, inputs):
        super()._set_inputs(inputs)
        if isinstance(self.v, TILEABLE_TYPE):
            self.v = self._inputs[1]

    def __call__(self, a, v):
        inputs = [a]
        if isinstance(v, TILEABLE_TYPE):
            inputs.append(v)
            shape = v.shape
        else:
            shape = ()
        return self.new_tensor(inputs, shape=shape, order=TensorOrder.C_ORDER)

    @classmethod
    def _tile_one_chunk(cls, op, a, v, out):
        chunks = []
        if len(op.inputs) == 1:
            v_chunks = [v]
        else:
            v_chunks = v.chunks
        for v_chunk in v_chunks:
            chunk_op = op.copy().reset_key()
            in_chunks = [a.chunks[0]]
            if len(op.inputs) == 2:
                in_chunks.append(v_chunk)
            v_shape = v_chunk.shape if hasattr(v_chunk, "shape") else ()
            chunk_idx = v_chunk.index if len(op.inputs) == 2 else (0,)
            chunk = chunk_op.new_chunk(
                in_chunks, shape=v_shape, index=chunk_idx, order=out.order
            )
            chunks.append(chunk)
        new_op = op.copy().reset_key()
        nsplits = ((s,) for s in out.shape) if len(op.inputs) == 1 else v.nsplits
        return new_op.new_tensors(op.inputs, out.shape, chunks=chunks, nsplits=nsplits)

    @classmethod
    def _combine_chunks(
        cls,
        to_combine: List[ChunkType],
        op_type: Type,
        v: Any,
        stage: OperandStage,
        chunk_index: Tuple[int],
    ):
        from ..merge import TensorStack

        dtype = np.dtype(np.intp)
        v_shape = v.shape if hasattr(v, "shape") else ()
        combine_op = TensorStack(axis=0, dtype=dtype)
        combine_chunk = combine_op.new_chunk(to_combine, shape=v_shape)
        chunk_op = op_type(dtype=dtype, axis=(0,), stage=stage)
        return chunk_op.new_chunk(
            [combine_chunk], shape=v_shape, index=chunk_index, order=TensorOrder.C_ORDER
        )

    @classmethod
    def _tile_tree_reduction(
        cls, op: "TensorSearchsorted", a: TileableType, v: Any, out: TileableType
    ):
        from ..indexing import TensorSlice
        from ..merge import TensorConcatenate
        from ..reduction import TensorMax, TensorMin

        if has_unknown_shape(a):
            yield

        combine_size = op.combine_size or options.combine_size
        n_chunk = len(a.chunks)
        input_len = len(op.inputs)
        v_chunks = [v] if input_len == 1 else v.chunks
        cum_nsplits = [0] + np.cumsum(a.nsplits[0]).tolist()

        input_chunks = []
        offsets = []
        for i in range(n_chunk):
            offset = cum_nsplits[i]
            cur_chunk = a.chunks[i]
            chunk_size = a.shape[0]
            chunks = []
            if i > 0:
                last_chunk = a.chunks[i - 1]
                if last_chunk.shape[0] > 0:
                    slice_chunk_op = TensorSlice(
                        slices=[slice(-1, None)], dtype=cur_chunk.dtype
                    )
                    slice_chunk = slice_chunk_op.new_chunk(
                        [last_chunk], shape=(1,), order=out.order
                    )
                    chunks.append(slice_chunk)
                    chunk_size += 1
                    offset -= 1
            chunks.append(cur_chunk)
            if i < n_chunk - 1:
                next_chunk = a.chunks[i + 1]
                if next_chunk.shape[0] > 0:
                    slice_chunk_op = TensorSlice(
                        slices=[slice(1)], dtype=cur_chunk.dtype
                    )
                    slice_chunk = slice_chunk_op.new_chunk(
                        [next_chunk], shape=(1,), order=out.order
                    )
                    chunks.append(slice_chunk)
                    chunk_size += 1

            concat_op = TensorConcatenate(dtype=cur_chunk.dtype)
            concat_chunk = concat_op.new_chunk(
                chunks, shape=(chunk_size,), order=out.order, index=cur_chunk.index
            )
            input_chunks.append(concat_chunk)
            offsets.append(offset)

        out_chunks = []
        for v_chunk in v_chunks:
            chunks = []
            v_shape = v_chunk.shape if hasattr(v_chunk, "shape") else ()
            v_index = v_chunk.index if hasattr(v_chunk, "index") else (0,)
            for inp_chunk, offset in zip(input_chunks, offsets):
                chunk_op = op.copy().reset_key()
                chunk_op.stage = OperandStage.map
                chunk_op.offset = offset
                chunk_op.n_chunk = n_chunk
                chunk_op.size = a.shape[0]
                chunk_inputs = [inp_chunk]
                if input_len > 1:
                    chunk_inputs.append(v_chunk)
                map_chunk = chunk_op.new_chunk(
                    chunk_inputs, shape=v_shape, index=inp_chunk.index, order=out.order
                )
                chunks.append(map_chunk)

            op_type = TensorMax if op.side == "right" else TensorMin
            while len(chunks) > combine_size:
                new_chunks = []
                it = itertools.count(0)
                while True:
                    j = next(it)
                    to_combine = chunks[j * combine_size : (j + 1) * combine_size]
                    if len(to_combine) == 0:
                        break

                    new_chunks.append(
                        cls._combine_chunks(
                            to_combine, op_type, v_chunk, OperandStage.combine, (j,)
                        )
                    )
                chunks = new_chunks

            chunk = cls._combine_chunks(
                chunks, op_type, v_chunk, OperandStage.agg, v_index
            )
            out_chunks.append(chunk)

        new_op = op.copy().reset_key()
        nsplits = ((s,) for s in out.shape) if len(op.inputs) == 1 else v.nsplits
        return new_op.new_tensors(
            op.inputs, out.shape, chunks=out_chunks, nsplits=nsplits
        )

    @classmethod
    def tile(cls, op):
        a = op.inputs[0]
        out = op.outputs[0]
        input_len = len(op.inputs)
        if input_len == 1:
            v = op.v
        else:
            v = op.inputs[1]

        if len(a.chunks) == 1:
            return cls._tile_one_chunk(op, a, v, out)
        return (yield from cls._tile_tree_reduction(op, a, v, out))

    @classmethod
    def _execute_without_stage(cls, xp, a, v, op):
        return xp.searchsorted(a, v, side=op.side)

    @classmethod
    def _execute_map(cls, xp: Any, a: np.ndarray, v: Any, op: "TensorSearchsorted"):
        out = op.outputs[0]
        i = out.index[0]
        side = op.side

        raw_v = v
        v = xp.atleast_1d(v)
        searched = xp.searchsorted(a, v, side=op.side)
        xp.add(searched, op.offset, out=searched)
        a_min, a_max = a[0], a[-1]
        if i == 0:
            # the first chunk
            if a_min == a_max:
                miss = v > a_max
            else:
                miss = v > a_max if side == "left" else v >= a_max
        elif i == op.n_chunk - 1:
            # the last chunk
            if a_min == a_max:
                miss = v < a_min
            else:
                miss = v <= a_min if side == "left" else v < a_min
        else:
            if side == "left" and a_min < a_max:
                miss = (v <= a_min) | (v > a_max)
            elif a_min < a_max:
                miss = (v < a_min) | (v >= a_max)
            else:
                assert a_min == a_max
                miss = v != a_min
        if side == "right":
            searched[miss] = -1
        else:
            searched[miss] = op.size + 1

        return searched[0] if np.isscalar(raw_v) else searched

    @classmethod
    def execute(cls, ctx, op):
        a = ctx[op.inputs[0].key]
        v = ctx[op.inputs[1].key] if len(op.inputs) == 2 else op.v

        data = []
        if isinstance(a, tuple):
            data.extend(a)
        else:
            data.append(a)
        if len(op.inputs) == 2:
            data.append(v)

        data, device_id, xp = as_same_device(data, device=op.device, ret_extra=True)

        if isinstance(a, tuple):
            a = data[:2]
        else:
            a = data[0]
        if len(op.inputs) == 2:
            v = data[-1]

        with device(device_id):
            if op.stage is None:
                ret = cls._execute_without_stage(xp, a, v, op)
            else:
                assert op.stage == OperandStage.map
                ret = cls._execute_map(xp, a, v, op)
            ctx[op.outputs[0].key] = ret


[docs]def searchsorted(a, v, side="left", sorter=None, combine_size=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted tensor `a` such that, if the corresponding elements in `v` were inserted before the indices, the order of `a` would be preserved. Assuming that `a` is sorted: ====== ============================ `side` returned index `i` satisfies ====== ============================ left ``a[i-1] < v <= a[i]`` right ``a[i-1] <= v < a[i]`` ====== ============================ Parameters ---------- a : 1-D array_like Input tensor. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. v : array_like Values to insert into `a`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `a`). sorter : 1-D array_like, optional Optional tensor of integer indices that sort array a into ascending order. They are typically the result of argsort. combine_size: int, optional The number of chunks to combine. Returns ------- indices : tensor of ints Array of insertion points with the same shape as `v`. See Also -------- sort : Return a sorted copy of a tensor. histogram : Produce histogram from 1-D data. Notes ----- Binary search is used to find the required insertion points. This function is a faster version of the builtin python `bisect.bisect_left` (``side='left'``) and `bisect.bisect_right` (``side='right'``) functions, which is also vectorized in the `v` argument. Examples -------- >>> import mars.tensor as mt >>> mt.searchsorted([1,2,3,4,5], 3).execute() 2 >>> mt.searchsorted([1,2,3,4,5], 3, side='right').execute() 3 >>> mt.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]).execute() array([0, 5, 1, 2]) """ if ( not isinstance(a, TENSOR_TYPE) and sorter is not None and not isinstance(sorter, TENSOR_TYPE) ): a = astensor(np.asarray(a)[sorter]) else: a = astensor(a) if sorter is not None: a = a[sorter] if a.ndim != 1: raise ValueError("`a` should be 1-d tensor") if a.issparse(): # does not support sparse tensor raise ValueError("`a` should be a dense tensor") if side not in {"left", "right"}: raise ValueError(f"'{side}' is an invalid value for keyword 'side'") if not np.isscalar(v): v = astensor(v) op = TensorSearchsorted( v=v, side=side, dtype=np.dtype(np.intp), combine_size=combine_size ) return op(a, v)