Source code for xorbits._mars.tensor.random.lognormal

# Copyright 2022-2023 XProbe Inc.
# derived from copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from ... import opcodes as OperandDef
from ...serialization.serializables import AnyField
from ..utils import gen_random_seeds
from .core import TensorDistribution, TensorRandomOperandMixin, handle_array


class TensorLognormal(TensorDistribution, TensorRandomOperandMixin):
    _input_fields_ = ["mean", "sigma"]
    _op_type_ = OperandDef.RAND_LOGNORMAL

    _fields_ = "mean", "sigma", "size"
    mean = AnyField("mean")
    sigma = AnyField("sigma")
    _func_name = "lognormal"

    def __call__(self, mean, sigma, chunk_size=None):
        return self.new_tensor([mean, sigma], None, raw_chunk_size=chunk_size)


[docs]def lognormal( random_state, mean=0.0, sigma=1.0, size=None, chunk_size=None, gpu=None, dtype=None ): r""" Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Should be greater than zero. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. chunk_size : int or tuple of int or tuple of ints, optional Desired chunk size on each dimension gpu : bool, optional Allocate the tensor on GPU if True, False as default dtype : data-type, optional Data-type of the returned tensor. Returns ------- out : Tensor or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> import mars.tensor as mt >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = mt.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s.execute(), 100, normed=True, align='mid') >>> x = mt.linspace(min(bins), max(bins), 10000) >>> pdf = (mt.exp(-(mt.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * mt.sqrt(2 * mt.pi))) >>> plt.plot(x.execute(), pdf.execute(), linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + mt.random.random(100) ... b.append(mt.product(a).execute()) >>> b = mt.array(b) / mt.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b.execute(), 100, normed=True, align='mid') >>> sigma = mt.std(mt.log(b)) >>> mu = mt.mean(mt.log(b)) >>> x = mt.linspace(min(bins), max(bins), 10000) >>> pdf = (mt.exp(-(mt.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * mt.sqrt(2 * mt.pi))) >>> plt.plot(x.execute(), pdf.execute(), color='r', linewidth=2) >>> plt.show() """ if dtype is None: dtype = ( np.random.RandomState() .lognormal(handle_array(mean), handle_array(sigma), size=(0,)) .dtype ) size = random_state._handle_size(size) seed = gen_random_seeds(1, random_state.to_numpy())[0] op = TensorLognormal(seed=seed, size=size, gpu=gpu, dtype=dtype) return op(mean, sigma, chunk_size=chunk_size)