Source code for xorbits._mars.tensor.reshape.reshape

# Copyright 2022-2023 XProbe Inc.
# derived from copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import logging

import numpy as np

from ... import opcodes as OperandDef
from ...core import recursive_tile
from ...core.operand import OperandStage
from ...serialization.serializables import FieldTypes, KeyField, StringField, TupleField
from ...utils import has_unknown_shape
from ..array_utils import as_same_device, device
from ..datasource import tensor as astensor
from ..operands import TensorMapReduceOperand, TensorOperandMixin, TensorShuffleProxy
from ..utils import decide_chunk_sizes, get_order

logger = logging.getLogger(__name__)


class TensorReshape(TensorMapReduceOperand, TensorOperandMixin):
    _op_type_ = OperandDef.RESHAPE

    _input = KeyField("input")
    _newshape = TupleField("newshape", FieldTypes.int64)
    _order = StringField("order")

    _axis_offsets = TupleField("axis_offsets", FieldTypes.uint64)
    _oldshape = TupleField("oldshape", FieldTypes.uint64)
    _new_chunk_size = TupleField("new_chunk_size", FieldTypes.uint64)

    def __init__(
        self,
        newshape=None,
        order=None,
        axis_offsets=None,
        oldshape=None,
        new_chunk_size=None,
        **kw,
    ):
        super().__init__(
            _newshape=newshape,
            _order=order,
            _axis_offsets=axis_offsets,
            _oldshape=oldshape,
            _new_chunk_size=new_chunk_size,
            **kw,
        )

    @property
    def input(self):
        return self._input

    @property
    def newshape(self):
        return self._newshape

    @property
    def axis_offsets(self):
        return self._axis_offsets

    @property
    def oldshape(self):
        return self._oldshape

    @property
    def new_chunk_size(self):
        return self._new_chunk_size

    @property
    def order(self):
        return self._order

    def _set_inputs(self, inputs):
        super()._set_inputs(inputs)
        self._input = self._inputs[0]

    def on_output_modify(self, new_output):
        return reshape(new_output, self._input.shape)

    def on_input_modify(self, new_input):
        op = self.copy().reset_key()
        return op(new_input)

    def __call__(self, a, order, out_shape):
        return self.new_tensor([a], out_shape, order=order)

    @staticmethod
    def _gen_reshape_rechunk_nsplits(old_shape, new_shape, nsplits):
        old_idx = len(old_shape) - 1
        new_idx = len(new_shape) - 1
        rechunk_nsplists = [None for _ in old_shape]
        reshape_nsplists = [None for _ in new_shape]

        while old_idx >= 0 or new_idx >= 0:
            old_dim_size = old_shape[old_idx]
            new_dim_size = new_shape[new_idx]

            if old_dim_size == new_dim_size:
                # nothing need to do
                rechunk_nsplists[old_idx] = nsplits[old_idx]
                reshape_nsplists[new_idx] = nsplits[old_idx]
                old_idx -= 1
                new_idx -= 1
                continue

            if old_dim_size == 1:
                rechunk_nsplists[old_idx] = (1,)
                old_idx -= 1
            elif new_dim_size == 1:
                reshape_nsplists[new_idx] = (1,)
                new_idx -= 1
            elif old_dim_size < new_dim_size:
                left_old_idx = old_idx - 1
                while (
                    left_old_idx >= 0
                    and np.prod(old_shape[left_old_idx : old_idx + 1]) < new_dim_size
                ):
                    left_old_idx -= 1
                if np.prod(old_shape[left_old_idx : old_idx + 1]) != new_dim_size:
                    raise ValueError("shapes not compatible")

                for i in range(left_old_idx + 1, old_idx + 1):
                    # rechunk the higher dimension into 1 chunk
                    # e.g. ((2, 2, 2), [(3, 3), (4, 4))] -> [6, 8]
                    rechunk_nsplists[i] = (old_shape[i],)

                chunk_reduce = np.prod(
                    [len(c) for c in nsplits[left_old_idx + 1 : old_idx + 1]]
                ).item()
                # cause the higher dimension has been concatenated,
                # the lowest dimension should be expanded to reduce size
                rechunk_nsplists[left_old_idx] = TensorReshape._expand_nsplit_by_reduce(
                    nsplits[left_old_idx], chunk_reduce
                )

                size_reduce = np.prod(old_shape[left_old_idx + 1 : old_idx + 1]).item()
                reshape_nsplists[new_idx] = tuple(
                    size_reduce * c for c in rechunk_nsplists[left_old_idx]
                )

                old_idx = left_old_idx - 1
                new_idx -= 1
            else:
                assert old_dim_size > new_dim_size
                lef_new_idx = new_idx - 1
                while (
                    lef_new_idx >= 0
                    and np.prod(new_shape[lef_new_idx : new_idx + 1]) < old_dim_size
                ):
                    lef_new_idx -= 1
                if np.prod(new_shape[lef_new_idx : new_idx + 1]) != old_dim_size:
                    raise ValueError("shapes not compatible")

                chunk_expand = np.prod(new_shape[lef_new_idx + 1 : new_idx + 1]).item()
                rechunk_nsplists[old_idx] = TensorReshape._reduce_nsplit_by_expand(
                    nsplits[old_idx], chunk_expand
                )

                for i in range(lef_new_idx + 1, new_idx + 1):
                    reshape_nsplists[i] = (new_shape[i],)
                reshape_nsplists[lef_new_idx] = tuple(
                    c // chunk_expand for c in rechunk_nsplists[old_idx]
                )

                old_idx -= 1
                new_idx = lef_new_idx - 1

        assert np.prod([len(s) for s in rechunk_nsplists]) == np.prod(
            [len(s) for s in reshape_nsplists]
        )
        return rechunk_nsplists, reshape_nsplists

    @staticmethod
    def _expand_nsplit_by_reduce(splits, reduced):
        if reduced == 1:
            return splits

        out = []
        for s in splits:
            x = s
            part = max(x / reduced, 1)
            while x >= 2 * part:
                out.append(int(part))
                x -= int(part)
            if x:
                out.append(x)
        assert sum(splits) == sum(out)
        return tuple(out)

    @staticmethod
    def _reduce_nsplit_by_expand(splits, expand):
        assert sum(splits) % expand == 0

        out = []
        residual = 0
        for chunk in splits:
            chunk += residual
            div = chunk // expand
            residual = chunk % expand
            good = expand * div
            if good:
                out.append(good)
        return tuple(out)

    @staticmethod
    def _tile_as_shuffle(op):
        in_tensor = op.input
        tensor = op.outputs[0]
        new_shape = op.newshape
        shuffle_inputs, shuffle_outputs = [], []
        axis_offsets = [[0] + np.cumsum(ns)[:-1].tolist() for ns in in_tensor.nsplits]

        max_chunk_size = max(max(tp) for tp in in_tensor.nsplits)
        out_nsplits = decide_chunk_sizes(
            new_shape, max_chunk_size, tensor.dtype.itemsize
        )
        chunk_size_idxes = (range(len(size)) for size in out_nsplits)

        for inp in in_tensor.chunks:
            offset = tuple(
                axis_offsets[axis][idx] for axis, idx in enumerate(inp.index)
            )
            chunk_op = TensorReshape(
                stage=OperandStage.map,
                axis_offsets=offset,
                oldshape=in_tensor.shape,
                newshape=new_shape,
                new_chunk_size=(max_chunk_size,) * len(new_shape),
                dtype=inp.dtype,
            )
            shuffle_inputs.append(
                chunk_op.new_chunk([inp], shape=(np.nan,), index=inp.index)
            )

        proxy_chunk = TensorShuffleProxy(
            dtype=in_tensor.dtype, _tensor_keys=[in_tensor.op.key]
        ).new_chunk(shuffle_inputs, shape=())

        out_indices = list(
            zip(itertools.product(*out_nsplits), itertools.product(*chunk_size_idxes))
        )
        for chunk_shape, chunk_idx in out_indices:
            chunk_op = TensorReshape(
                stage=OperandStage.reduce,
                dtype=tensor.dtype,
                n_reducers=len(out_indices),
            )
            shuffle_outputs.append(
                chunk_op.new_chunk(
                    [proxy_chunk],
                    shape=chunk_shape,
                    order=tensor.order,
                    index=chunk_idx,
                )
            )

        new_op = op.copy()
        return new_op.new_tensors(
            op.inputs,
            new_shape,
            order=tensor.order,
            chunks=shuffle_outputs,
            nsplits=out_nsplits,
        )

    @classmethod
    def tile(cls, op):
        in_tensor = op.input
        tensor = op.outputs[0]

        # check unknown shape
        if has_unknown_shape(*op.inputs):
            yield

        if any(np.isnan(s) for s in tensor.shape):
            # -1 exists in newshape and input tensor has unknown shape
            # recalculate new shape
            shape = tuple(-1 if np.isnan(s) else s for s in tensor.shape)
            op._newshape = newshape = calc_shape(in_tensor.size, shape)
            tensor._shape = newshape

        if op.order == "F":
            # do transpose first, then do regular reshape, then transpose back
            result = in_tensor.transpose().reshape(op.newshape[::-1])
            if getattr(op, "_reshape_with_shuffle", True):
                result.op.extra_params["_reshape_with_shuffle"] = True
            result = result.transpose()
            return [(yield from recursive_tile(result))]

        if len(in_tensor.chunks) == 1:
            # 1 chunk
            chunk_op = op.copy().reset_key()
            chunk = chunk_op.new_chunk(
                in_tensor.chunks,
                shape=tensor.shape,
                order=tensor.order,
                index=(0,) * tensor.ndim,
            )
            new_op = op.copy()
            return new_op.new_tensors(
                op.inputs,
                shape=tensor.shape,
                order=tensor.order,
                chunks=[chunk],
                nsplits=tuple((s,) for s in tensor.shape),
            )
        try:
            rechunk_nsplits, reshape_nsplits = cls._gen_reshape_rechunk_nsplits(
                in_tensor.shape, tensor.shape, in_tensor.nsplits
            )
            rechunked_tensor = yield from recursive_tile(
                in_tensor.rechunk(rechunk_nsplits)
            )
            in_idxes = itertools.product(*[range(len(s)) for s in rechunk_nsplits])
            out_idxes = itertools.product(*[range(len(s)) for s in reshape_nsplits])
            out_shape = itertools.product(*[s for s in reshape_nsplits])
            out_chunks = []
            for input_idx, out_idx, out_shape in zip(in_idxes, out_idxes, out_shape):
                in_chunk = rechunked_tensor.cix[input_idx]
                chunk_op = op.copy().reset_key()
                chunk_op._newshape = out_shape
                out_chunk = chunk_op.new_chunk(
                    [in_chunk], shape=out_shape, order=tensor.order, index=out_idx
                )
                out_chunks.append(out_chunk)

            new_op = op.copy()
            return new_op.new_tensors(
                op.inputs,
                tensor.shape,
                order=tensor.order,
                chunks=out_chunks,
                nsplits=reshape_nsplits,
            )
        except ValueError:
            # TODO: make this as default when shuffle is mature
            if getattr(op.extra_params, "_reshape_with_shuffle", False):
                return cls._tile_as_shuffle(op)

            # shape incompatible, we will first do flatten, then reshape to the new shape
            return [
                (
                    yield from recursive_tile(
                        in_tensor.reshape(-1, order=tensor.op.order).reshape(
                            tensor.shape, order=tensor.op.order
                        )
                    )
                )
            ]

    @classmethod
    def estimate_size(cls, ctx, op):
        chunk = op.outputs[0]
        if op.stage == OperandStage.map:
            inp_chunk = chunk.inputs[0]
            inp_size, inp_calc = ctx[inp_chunk.key]
            store_overhead = np.int64().itemsize * inp_chunk.ndim
            calc_overhead = np.int64().itemsize * (inp_chunk.ndim + 2)
            ctx[chunk.key] = (store_overhead + inp_size, calc_overhead + inp_calc)
        elif op.stage == OperandStage.reduce:
            sum_size = 0
            for shuffle_input in chunk.inputs[0].inputs or ():
                key = (shuffle_input.key, chunk.index)
                if ctx.get(key) is not None:
                    sum_size += ctx[key][0]
                else:
                    ctx[key] = None
            ctx[chunk.key] = (chunk.nbytes, max(sum_size, chunk.nbytes))
        else:
            super().estimate_size(ctx, op)

    @classmethod
    def _execute_map(cls, ctx, op):
        chunk = op.outputs[0]
        # todo this function is an experimental one making shuffle runnable.
        # try elevate performance when needed.
        old_shape = op.oldshape
        new_shape = op.newshape
        new_chunk_size = op.new_chunk_size
        axis_offset = op.axis_offsets

        logger.debug("Reshape mapper: Start mapping step for %s", chunk.key)

        data = ctx[op.inputs[0].key]
        indices = list(np.nonzero(data))
        nz_data = data[tuple(indices)]

        for idx in range(len(old_shape)):
            indices[idx] = np.add(indices[idx], axis_offset[idx], out=indices[idx])
        rest_indices = indices[0]
        indices[0] = None
        for idx in range(1, len(old_shape)):
            rest_indices = np.multiply(rest_indices, old_shape[idx], out=rest_indices)
            rest_indices = np.add(rest_indices, indices[idx], out=rest_indices)
            indices[idx] = None
        del indices

        new_indices = []
        for dim_size in reversed(new_shape[1:]):
            new_index = rest_indices % dim_size
            new_indices.append(new_index)
            rest_indices = np.floor_divide(rest_indices, dim_size, out=rest_indices)
        new_indices.append(rest_indices)
        new_indices.reverse()
        del rest_indices

        logger.debug("Reshape mapper: remapping to new locations for %s", chunk.key)

        dim_chunk_counts = [
            int(np.ceil(dim_size * 1.0 / chunk_size))
            for dim_size, chunk_size in zip(new_shape, new_chunk_size)
        ]
        target = new_indices[0] // new_chunk_size[0]
        for new_index, chunk_size, dim_chunk_count in zip(
            new_indices[1:], new_chunk_size[1:], dim_chunk_counts[1:]
        ):
            target = np.multiply(target, dim_chunk_count, out=target)
            target = np.add(target, new_index // chunk_size, out=target)

        for idx, chunk_size in enumerate(new_chunk_size):
            new_indices[idx] = np.mod(
                new_indices[idx], chunk_size, out=new_indices[idx]
            )

        logger.debug("Reshape mapper: sorting for %s", chunk.key)

        sort_idx = np.argsort(target)
        target = target[sort_idx]
        nz_data = nz_data[sort_idx]
        for idx in range(len(new_indices)):
            new_indices[idx] = new_indices[idx][sort_idx]
        del sort_idx

        logger.debug("Reshape mapper: splitting for %s", chunk.key)

        mapper_outputs = {}
        for t in np.unique(target):
            data_slice = slice(
                np.searchsorted(target, t), np.searchsorted(target, t, "right")
            )
            group_indices = tuple(
                new_indices[idx][data_slice] for idx in range(len(new_shape))
            )
            group_data = nz_data[data_slice]

            target_chunk_idx = [None] * len(dim_chunk_counts)
            for idx, dim_chunk_count in enumerate(reversed(dim_chunk_counts)):
                t, target_chunk_idx[idx] = divmod(t, dim_chunk_count)
            target_chunk_idx.reverse()

            mapper_outputs[chunk.key, tuple(target_chunk_idx)] = group_indices + (
                group_data,
            )

        # ensure all mapper data are inserted context and fill missing partition with None
        for target_chunk_idx in itertools.product(
            *(range(dim_chunk_cnt) for dim_chunk_cnt in dim_chunk_counts)
        ):
            data_key = chunk.key, tuple(target_chunk_idx)
            ctx[data_key] = mapper_outputs.get(data_key)

    @classmethod
    def _execute_reduce(cls, ctx, op: "TensorReshape"):
        chunk = op.outputs[0]
        try:
            result_array = ctx[chunk.key]
        except KeyError:
            result_array = np.zeros(
                chunk.shape, dtype=chunk.dtype, order=chunk.order.value
            )
        for data_tuple in op.iter_mapper_data(ctx, skip_none=True):
            if data_tuple is None:
                # skip missing partition data
                continue
            result_array[data_tuple[:-1]] = data_tuple[-1]
        ctx[chunk.key] = result_array

    @classmethod
    def execute(cls, ctx, op):
        if op.stage == OperandStage.map:
            cls._execute_map(ctx, op)
        elif op.stage == OperandStage.reduce:
            cls._execute_reduce(ctx, op)
        else:
            (x,), device_id, xp = as_same_device(
                [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True
            )

            with device(device_id):
                ctx[op.outputs[0].key] = x.reshape(op.newshape, order=op.order)


def calc_shape(size, newshape):
    if isinstance(newshape, int):
        newshape = (newshape,)
    else:
        newshape = tuple(int(s) for s in newshape)

    known_shape = [s for s in newshape if s >= 0]
    missing_dim = len(newshape) - len(known_shape)
    if missing_dim > 1:
        raise ValueError("can only specify one unknown dimension")
    if missing_dim == 1:
        known_size = np.prod(known_shape)
        newshape = tuple(
            int(size / known_size) if s < 0 and known_size > 0 else s for s in newshape
        )

    return newshape


[docs]def reshape(a, newshape, order="C"): """ Gives a new shape to a tensor without changing its data. Parameters ---------- a : array_like Tensor to be reshaped. newshape : int or tuple of ints The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D tensor of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the tensor and remaining dimensions. order : {'C', 'F', 'A'}, optional Read the elements of `a` using this index order, and place the elements into the reshaped array using this index order. 'C' means to read / write the elements using C-like index order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to read / write the elements using Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of indexing. 'A' means to read / write the elements in Fortran-like index order if `a` is Fortran *contiguous* in memory, C-like order otherwise. Returns ------- reshaped_array : Tensor This will be a new view object if possible; otherwise, it will be a copy. See Also -------- Tensor.reshape : Equivalent method. Notes ----- It is not always possible to change the shape of a tensor without copying the data. If you want an error to be raised when the data is copied, you should assign the new shape to the shape attribute of the array:: >>> import mars.tensor as mt >>> a = mt.arange(6).reshape((3, 2)) >>> a.execute() array([[0, 1], [2, 3], [4, 5]]) You can think of reshaping as first raveling the tensor (using the given index order), then inserting the elements from the raveled tensor into the new tensor using the same kind of index ordering as was used for the raveling. >>> mt.reshape(a, (2, 3)).execute() array([[0, 1, 2], [3, 4, 5]]) >>> mt.reshape(mt.ravel(a), (2, 3)).execute() array([[0, 1, 2], [3, 4, 5]]) Examples -------- >>> a = mt.array([[1,2,3], [4,5,6]]) >>> mt.reshape(a, 6).execute() array([1, 2, 3, 4, 5, 6]) >>> mt.reshape(a, (3,-1)).execute() # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]]) """ a = astensor(a) if np.isnan(sum(a.shape)): # some shape is nan new_shape = [newshape] if isinstance(newshape, int) else list(newshape) # if -1 exists in newshape, just treat it as unknown shape new_shape = [s if s != -1 else np.nan for s in new_shape] out_shape = tuple(new_shape) else: out_shape = newshape = calc_shape(a.size, newshape) if a.size != np.prod(newshape): raise ValueError( f"cannot reshape array of size {a.size} into shape {newshape}" ) tensor_order = get_order(order, a.order, available_options="CFA") if a.shape == newshape and ( a.ndim <= 1 or (a.ndim > 1 and tensor_order == a.order) ): # does not need to reshape return a return _reshape( a, newshape, order=order, tensor_order=tensor_order, out_shape=out_shape )
def _reshape(a, newshape, order="C", tensor_order=None, out_shape=None): if tensor_order is None: tensor_order = get_order(order, a.order, available_options="CFA") op = TensorReshape( newshape, order, dtype=a.dtype, create_view=tensor_order == a.order ) if out_shape is None: out_shape = newshape return op(a, tensor_order, out_shape)