10 minutes to xorbits.pandas#

This is a short introduction to xorbits.pandas which is originated from pandas’ quickstart.

Customarily, we import and init as follows:

In [1]: import xorbits

In [2]: import xorbits.numpy as np

In [3]: import xorbits.pandas as pd

In [4]: xorbits.init()

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [6]: s
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing an array, with a datetime index and labeled columns:

In [7]: dates = pd.date_range('20130101', periods=6)

In [8]: dates
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df
Out[10]: 
                   A         B         C         D
2013-01-01  0.224446 -1.164657  1.515325 -0.553190
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117
2013-01-04 -1.266986  1.598020 -0.151260 -1.528504
2013-01-05  0.057634  0.830278 -0.654922  1.041385
2013-01-06  0.674938  0.021462 -1.439848  1.046305

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = pd.DataFrame({'A': 1.,
   ....:                     'B': pd.Timestamp('20130102'),
   ....:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': np.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.224446 -1.164657  1.515325 -0.553190
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117
2013-01-04 -1.266986  1.598020 -0.151260 -1.528504
2013-01-05  0.057634  0.830278 -0.654922  1.041385

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04 -1.266986  1.598020 -0.151260 -1.528504
2013-01-05  0.057634  0.830278 -0.654922  1.041385
2013-01-06  0.674938  0.021462 -1.439848  1.046305

Display the index, columns:

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() gives a ndarray representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and ndarray: ndarrays have one dtype for the entire ndarray, while DataFrames have one dtype per column. When you call DataFrame.to_numpy(), xorbits.pandas will find the ndarray dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesn’t require copying data.

In [18]: df.to_numpy()
Out[18]: 
array([[ 0.22444615, -1.16465735,  1.51532458, -0.55318981],
       [-0.4900508 ,  0.06517642, -0.36431766, -0.7294606 ],
       [-0.56180194, -2.5089035 , -0.54075921, -1.18411743],
       [-1.26698561,  1.59801965, -0.15125973, -1.52850352],
       [ 0.05763376,  0.83027825, -0.654922  ,  1.04138489],
       [ 0.67493784,  0.02146243, -1.43984801,  1.04630517]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive.

In [19]: df2.to_numpy()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_numpy() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.226970 -0.193104 -0.272630 -0.317930
std    0.687193  1.461166  0.979832  1.108995
min   -1.266986 -2.508903 -1.439848 -1.528504
25%   -0.543864 -0.868127 -0.626381 -1.070453
50%   -0.216209  0.043319 -0.452538 -0.641325
75%    0.182743  0.639003 -0.204524  0.642741
max    0.674938  1.598020  1.515325  1.046305

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01 -0.553190  1.515325 -1.164657  0.224446
2013-01-02 -0.729461 -0.364318  0.065176 -0.490051
2013-01-03 -1.184117 -0.540759 -2.508903 -0.561802
2013-01-04 -1.528504 -0.151260  1.598020 -1.266986
2013-01-05  1.041385 -0.654922  0.830278  0.057634
2013-01-06  1.046305 -1.439848  0.021462  0.674938

Sorting by values:

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117
2013-01-01  0.224446 -1.164657  1.515325 -0.553190
2013-01-06  0.674938  0.021462 -1.439848  1.046305
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-05  0.057634  0.830278 -0.654922  1.041385
2013-01-04 -1.266986  1.598020 -0.151260 -1.528504

Selection#

Note

While standard Python expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized xorbits.pandas data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A']
Out[23]: 
2013-01-01    0.224446
2013-01-02   -0.490051
2013-01-03   -0.561802
2013-01-04   -1.266986
2013-01-05    0.057634
2013-01-06    0.674938
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows:

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.224446 -1.164657  1.515325 -0.553190
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117
2013-01-04 -1.266986  1.598020 -0.151260 -1.528504

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101']
Out[26]: 
A    0.224446
B   -1.164657
C    1.515325
D   -0.553190
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']]
Out[27]: 
                   A         B
2013-01-01  0.224446 -1.164657
2013-01-02 -0.490051  0.065176
2013-01-03 -0.561802 -2.508903
2013-01-04 -1.266986  1.598020
2013-01-05  0.057634  0.830278
2013-01-06  0.674938  0.021462

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]: 
                   A         B
2013-01-02 -0.490051  0.065176
2013-01-03 -0.561802 -2.508903
2013-01-04 -1.266986  1.598020

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]: 
A   -0.490051
B    0.065176
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A']
Out[30]: 0.22444615122186354

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A']
Out[31]: 0.22444615122186354

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]: 
A   -1.266986
B    1.598020
C   -0.151260
D   -1.528504
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to python:

In [33]: df.iloc[3:5, 0:2]
Out[33]: 
                   A         B
2013-01-04 -1.266986  1.598020
2013-01-05  0.057634  0.830278

By lists of integer position locations, similar to the python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]: 
                   A         C
2013-01-02 -0.490051 -0.364318
2013-01-03 -0.561802 -0.540759
2013-01-05  0.057634 -0.654922

For slicing rows explicitly:

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02 -0.490051  0.065176 -0.364318 -0.729461
2013-01-03 -0.561802 -2.508903 -0.540759 -1.184117

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01 -1.164657  1.515325
2013-01-02  0.065176 -0.364318
2013-01-03 -2.508903 -0.540759
2013-01-04  1.598020 -0.151260
2013-01-05  0.830278 -0.654922
2013-01-06  0.021462 -1.439848

For getting a value explicitly:

In [37]: df.iloc[1, 1]
Out[37]: 0.06517641626685941

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1]
Out[38]: 0.06517641626685941

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.224446 -1.164657  1.515325 -0.553190
2013-01-05  0.057634  0.830278 -0.654922  1.041385
2013-01-06  0.674938  0.021462 -1.439848  1.046305

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.224446       NaN  1.515325       NaN
2013-01-02       NaN  0.065176       NaN       NaN
2013-01-03       NaN       NaN       NaN       NaN
2013-01-04       NaN  1.598020       NaN       NaN
2013-01-05  0.057634  0.830278       NaN  1.041385
2013-01-06  0.674938  0.021462       NaN  1.046305

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean()
Out[41]: 
A   -0.226970
B   -0.193104
C   -0.272630
D   -0.317930
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1)
Out[42]: 
2013-01-01    0.005481
2013-01-02   -0.379663
2013-01-03   -1.198896
2013-01-04   -0.337182
2013-01-05    0.318594
2013-01-06    0.075714
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, xorbits.pandas automatically broadcasts along the specified dimension.

In [43]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [44]: s
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index')
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -1.561802 -3.508903 -1.540759 -2.184117
2013-01-04 -4.266986 -1.401980 -3.151260 -4.528504
2013-01-05 -4.942366 -4.169722 -5.654922 -3.958615
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min())
Out[46]: 
A    1.941923
B    4.106923
C    2.955173
D    2.574809
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them).

In [47]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

xorbits.pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating xorbits.pandas objects together with concat():

In [49]: df = pd.DataFrame(np.random.randn(10, 4))

In [50]: df
Out[50]: 
          0         1         2         3
0 -0.630711 -1.055283  0.700147 -1.388102
1  0.890356 -1.709177  0.078013  0.607967
2  1.873063  0.569527 -2.301107 -0.740584
3 -0.360962  2.270846  1.031973 -0.476972
4  2.418310 -0.686323 -1.147042 -0.292606
5  1.089239  0.343140 -0.156534 -0.349143
6  0.742573 -1.403164  0.381083 -1.586600
7 -1.108405 -0.700347 -0.433201 -0.261067
8 -1.478137  0.795965  0.778158 -0.998803
9 -1.553243  0.210058 -2.481455 -0.581690

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: pd.concat(pieces)
Out[52]: 
          0         1         2         3
0 -0.630711 -1.055283  0.700147 -1.388102
1  0.890356 -1.709177  0.078013  0.607967
2  1.873063  0.569527 -2.301107 -0.740584
3 -0.360962  2.270846  1.031973 -0.476972
4  2.418310 -0.686323 -1.147042 -0.292606
5  1.089239  0.343140 -0.156534 -0.349143
6  0.742573 -1.403164  0.381083 -1.586600
7 -1.108405 -0.700347 -0.433201 -0.261067
8 -1.478137  0.795965  0.778158 -0.998803
9 -1.553243  0.210058 -2.481455 -0.581690

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges.

In [53]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: pd.merge(left, right, on='key')
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: pd.merge(left, right, on='key')
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': np.random.randn(8),
   ....:                    'D': np.random.randn(8)})
   ....: 

In [64]: df
Out[64]: 
     A      B         C         D
0  foo    one  0.224976 -0.990328
1  bar    one  0.740208 -0.199152
2  foo    two -0.693955  1.684258
3  bar  three -0.658850  0.431106
4  foo    two  1.023329 -0.316393
5  bar    two  1.409466  1.184248
6  foo    one  1.429536  1.139899
7  foo  three  1.271735  0.270696

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum()
Out[65]: 
                     B         C         D
A                                         
bar        onethreetwo  1.490823  1.416202
foo  onetwotwoonethree  3.255622  1.788130

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum()
Out[66]: 
                  C         D
A   B                        
bar one    0.740208 -0.199152
    three -0.658850  0.431106
    two    1.409466  1.184248
foo one    1.654512  0.149571
    three  1.271735  0.270696
    two    0.329375  1.367864

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = pd.Series(np.random.randn(1000),
   ....:                index=pd.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <Axes: >
../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <Axes: >

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f068e01ce50>
../_images/frame_plot_basic.png

Getting data in/out#

CSV#

Writing to a csv file.

In [77]: df.to_csv('foo.csv')
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: pd.read_csv('foo.csv')
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01   1.178291   0.364987  -0.840177  -0.332956
1    2000-01-02   2.057435   0.296857  -0.003532  -1.758008
2    2000-01-03   0.953813   0.271327  -0.756990  -1.198440
3    2000-01-04   0.589310  -0.392329   0.681356  -1.951529
4    2000-01-05   0.904952   1.599681   1.959410  -3.059426
..          ...        ...        ...        ...        ...
995  2002-09-22 -12.510332  39.213884  26.434486  59.426481
996  2002-09-23 -13.653644  38.167130  25.543169  58.687596
997  2002-09-24 -16.472875  37.242324  24.860751  56.588386
998  2002-09-25 -15.509081  37.077324  24.493449  56.980079
999  2002-09-26 -16.018922  36.578095  26.079306  57.032693

[1000 rows x 5 columns]