10 minutes to xorbits.pandas#

This is a short introduction to xorbits.pandas which is originated from pandas’ quickstart.

Customarily, we import and init as follows:

In [1]: import xorbits

In [2]: import xorbits.numpy as np

In [3]: import xorbits.pandas as pd

In [4]: xorbits.init()

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [6]: s
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing an array, with a datetime index and labeled columns:

In [7]: dates = pd.date_range('20130101', periods=6)

In [8]: dates
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df
Out[10]: 
                   A         B         C         D
2013-01-01  0.411902  1.709468 -0.213158  0.821644
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-03  0.421083 -0.750191  0.269751 -2.799289
2013-01-04 -1.329158  1.274036  2.442691 -0.409725
2013-01-05  0.689205 -1.501951  0.363000  0.401498
2013-01-06  0.426947 -0.469598 -1.295293 -1.435165

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = pd.DataFrame({'A': 1.,
   ....:                     'B': pd.Timestamp('20130102'),
   ....:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': np.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A          float64
B    datetime64[s]
C          float32
D            int32
E           object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.411902  1.709468 -0.213158  0.821644
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-03  0.421083 -0.750191  0.269751 -2.799289
2013-01-04 -1.329158  1.274036  2.442691 -0.409725
2013-01-05  0.689205 -1.501951  0.363000  0.401498

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04 -1.329158  1.274036  2.442691 -0.409725
2013-01-05  0.689205 -1.501951  0.363000  0.401498
2013-01-06  0.426947 -0.469598 -1.295293 -1.435165

Display the index, columns:

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() gives a ndarray representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and ndarray: ndarrays have one dtype for the entire ndarray, while DataFrames have one dtype per column. When you call DataFrame.to_numpy(), xorbits.pandas will find the ndarray dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesn’t require copying data.

In [18]: df.to_numpy()
Out[18]: 
array([[ 0.41190169,  1.70946816, -0.21315821,  0.82164367],
       [-0.72191001, -1.67731119, -1.57098611, -0.62196894],
       [ 0.42108334, -0.75019064,  0.26975121, -2.79928919],
       [-1.32915794,  1.2740364 ,  2.44269141, -0.40972548],
       [ 0.68920499, -1.50195139,  0.36299995,  0.40149762],
       [ 0.42694729, -0.46959787, -1.29529258, -1.43516459]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive.

In [19]: df2.to_numpy()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_numpy() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.016988 -0.235924 -0.000666 -0.673834
std    0.811215  1.418734  1.439617  1.308619
min   -1.329158 -1.677311 -1.570986 -2.799289
25%   -0.438457 -1.314011 -1.024759 -1.231866
50%    0.416493 -0.609894  0.028296 -0.515847
75%    0.425481  0.838128  0.339688  0.198692
max    0.689205  1.709468  2.442691  0.821644

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01  0.821644 -0.213158  1.709468  0.411902
2013-01-02 -0.621969 -1.570986 -1.677311 -0.721910
2013-01-03 -2.799289  0.269751 -0.750191  0.421083
2013-01-04 -0.409725  2.442691  1.274036 -1.329158
2013-01-05  0.401498  0.363000 -1.501951  0.689205
2013-01-06 -1.435165 -1.295293 -0.469598  0.426947

Sorting by values:

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-05  0.689205 -1.501951  0.363000  0.401498
2013-01-03  0.421083 -0.750191  0.269751 -2.799289
2013-01-06  0.426947 -0.469598 -1.295293 -1.435165
2013-01-04 -1.329158  1.274036  2.442691 -0.409725
2013-01-01  0.411902  1.709468 -0.213158  0.821644

Selection#

Note

While standard Python expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized xorbits.pandas data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A']
Out[23]: 
2013-01-01    0.411902
2013-01-02   -0.721910
2013-01-03    0.421083
2013-01-04   -1.329158
2013-01-05    0.689205
2013-01-06    0.426947
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows:

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.411902  1.709468 -0.213158  0.821644
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-03  0.421083 -0.750191  0.269751 -2.799289

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-03  0.421083 -0.750191  0.269751 -2.799289
2013-01-04 -1.329158  1.274036  2.442691 -0.409725

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101']
Out[26]: 
A    0.411902
B    1.709468
C   -0.213158
D    0.821644
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']]
Out[27]: 
                   A         B
2013-01-01  0.411902  1.709468
2013-01-02 -0.721910 -1.677311
2013-01-03  0.421083 -0.750191
2013-01-04 -1.329158  1.274036
2013-01-05  0.689205 -1.501951
2013-01-06  0.426947 -0.469598

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]: 
                   A         B
2013-01-02 -0.721910 -1.677311
2013-01-03  0.421083 -0.750191
2013-01-04 -1.329158  1.274036

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]: 
A   -0.721910
B   -1.677311
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A']
Out[30]: 0.41190169091385387

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A']
Out[31]: 0.41190169091385387

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]: 
A   -1.329158
B    1.274036
C    2.442691
D   -0.409725
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to python:

In [33]: df.iloc[3:5, 0:2]
Out[33]: 
                   A         B
2013-01-04 -1.329158  1.274036
2013-01-05  0.689205 -1.501951

By lists of integer position locations, similar to the python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]: 
                   A         C
2013-01-02 -0.721910 -1.570986
2013-01-03  0.421083  0.269751
2013-01-05  0.689205  0.363000

For slicing rows explicitly:

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02 -0.721910 -1.677311 -1.570986 -0.621969
2013-01-03  0.421083 -0.750191  0.269751 -2.799289

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01  1.709468 -0.213158
2013-01-02 -1.677311 -1.570986
2013-01-03 -0.750191  0.269751
2013-01-04  1.274036  2.442691
2013-01-05 -1.501951  0.363000
2013-01-06 -0.469598 -1.295293

For getting a value explicitly:

In [37]: df.iloc[1, 1]
Out[37]: -1.6773111933012679

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1]
Out[38]: -1.6773111933012679

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.411902  1.709468 -0.213158  0.821644
2013-01-03  0.421083 -0.750191  0.269751 -2.799289
2013-01-05  0.689205 -1.501951  0.363000  0.401498
2013-01-06  0.426947 -0.469598 -1.295293 -1.435165

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.411902  1.709468       NaN  0.821644
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.421083       NaN  0.269751       NaN
2013-01-04       NaN  1.274036  2.442691       NaN
2013-01-05  0.689205       NaN  0.363000  0.401498
2013-01-06  0.426947       NaN       NaN       NaN

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean()
Out[41]: 
A   -0.016988
B   -0.235924
C   -0.000666
D   -0.673834
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1)
Out[42]: 
2013-01-01    0.682464
2013-01-02   -1.148044
2013-01-03   -0.714661
2013-01-04    0.494461
2013-01-05   -0.012062
2013-01-06   -0.693277
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, xorbits.pandas automatically broadcasts along the specified dimension.

In [43]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [44]: s
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index')
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.578917 -1.750191 -0.730249 -3.799289
2013-01-04 -4.329158 -1.725964 -0.557309 -3.409725
2013-01-05 -4.310795 -6.501951 -4.637000 -4.598502
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min())
Out[46]: 
A    2.018363
B    3.386779
C    4.013678
D    3.620933
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them).

In [47]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

xorbits.pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating xorbits.pandas objects together with concat():

In [49]: df = pd.DataFrame(np.random.randn(10, 4))

In [50]: df
Out[50]: 
          0         1         2         3
0 -0.495508  0.903802  2.152979  1.098698
1 -0.327001 -0.586382  1.999350 -1.056401
2  0.341923 -0.024582  0.439198  0.662602
3 -1.896886  0.181549  0.119640 -1.426697
4 -2.407668 -0.780552 -1.301063  0.510010
5 -0.350738 -0.147771 -0.566869 -2.414299
6 -1.994935 -0.486425 -0.531758  1.624540
7 -0.358207 -0.884470  1.257721  0.587503
8 -0.945414 -1.055967  1.334790  0.817954
9  1.116094 -0.664818 -0.298791  0.042105

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: pd.concat(pieces)
Out[52]: 
          0         1         2         3
0 -0.495508  0.903802  2.152979  1.098698
1 -0.327001 -0.586382  1.999350 -1.056401
2  0.341923 -0.024582  0.439198  0.662602
3 -1.896886  0.181549  0.119640 -1.426697
4 -2.407668 -0.780552 -1.301063  0.510010
5 -0.350738 -0.147771 -0.566869 -2.414299
6 -1.994935 -0.486425 -0.531758  1.624540
7 -0.358207 -0.884470  1.257721  0.587503
8 -0.945414 -1.055967  1.334790  0.817954
9  1.116094 -0.664818 -0.298791  0.042105

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges.

In [53]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: pd.merge(left, right, on='key')
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: pd.merge(left, right, on='key')
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': np.random.randn(8),
   ....:                    'D': np.random.randn(8)})
   ....: 

In [64]: df
Out[64]: 
     A      B         C         D
0  foo    one -0.473456  1.016378
1  bar    one  0.373591  0.480215
2  foo    two -0.538622 -0.490436
3  bar  three -1.833243 -1.471246
4  foo    two -0.083388  1.389476
5  bar    two  0.874384  2.006862
6  foo    one -0.968538 -1.703000
7  foo  three -1.840837  0.066493

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum()
Out[65]: 
                     B         C         D
A                                         
bar        onethreetwo -0.585268  1.015831
foo  onetwotwoonethree -3.904840  0.278910

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum()
Out[66]: 
                  C         D
A   B                        
bar one    0.373591  0.480215
    three -1.833243 -1.471246
    two    0.874384  2.006862
foo one   -1.441994 -0.686622
    three -1.840837  0.066493
    two   -0.622010  0.899039

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = pd.Series(np.random.randn(1000),
   ....:                index=pd.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <Axes: >
savefig/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <Axes: >

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f523c12ae50>
savefig/frame_plot_basic.png

Getting data in/out#

CSV#

Writing to a csv file.

In [77]: df.to_csv('foo.csv')
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: pd.read_csv('foo.csv')
Out[78]: 
     Unnamed: 0         A          B         C          D
0    2000-01-01  0.385646   1.201584 -1.701511  -0.693112
1    2000-01-02  0.331648  -0.203431 -1.030354  -0.045550
2    2000-01-03  0.112350   0.024239 -0.690759  -1.354678
3    2000-01-04 -0.492772  -1.407550  0.535260  -0.030373
4    2000-01-05 -0.557673   0.116826  2.127525  -0.835155
..          ...       ...        ...       ...        ...
995  2002-09-22  6.795263  15.514409 -8.909048 -43.613612
996  2002-09-23  5.241447  15.386009 -9.248272 -43.035980
997  2002-09-24  2.541217  14.514584 -9.051257 -43.824801
998  2002-09-25  1.450811  14.913616 -9.681888 -42.579596
999  2002-09-26  1.895067  16.139412 -8.192430 -42.140289

[1000 rows x 5 columns]