DataFrame.corrwith(other, axis=0, drop=False, method='pearson', numeric_only=False)#

Compute pairwise correlation.

Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.

  • other (DataFrame, Series) – Object with which to compute correlations.

  • axis ({0 or 'index', 1 or 'columns'}, default 0) – The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise.

  • drop (bool, default False) – Drop missing indices from result.

  • method ({'pearson', 'kendall', 'spearman'} or callable) –

    Method of correlation:

    • pearson : standard correlation coefficient

    • kendall : Kendall Tau correlation coefficient

    • spearman : Spearman rank correlation

    • callable: callable with input two 1d ndarrays

      and returning a float.

  • numeric_only (bool, default False) –

    Include only float, int or boolean data.

    New in version 1.5.0(pandas).

    Changed in version 2.0.0(pandas): The default value of numeric_only is now False.


Pairwise correlations.

Return type


See also


Compute pairwise correlation of columns.


>>> index = ["a", "b", "c", "d", "e"]  
>>> columns = ["one", "two", "three", "four"]  
>>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns)  
>>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns)  
>>> df1.corrwith(df2)  
one      1.0
two      1.0
three    1.0
four     1.0
dtype: float64
>>> df2.corrwith(df1, axis=1)  
a    1.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64

This docstring was copied from pandas.core.frame.DataFrame.