xorbits.pandas.DataFrame.select_dtypes#
- DataFrame.select_dtypes(include=None, exclude=None)#
Return a subset of the DataFrame’s columns based on the column dtypes.
- Parameters
include (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
exclude (scalar or list-like) – A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
- Returns
The subset of the frame including the dtypes in
include
and excluding the dtypes inexclude
.- Return type
- Raises
ValueError –
If both of
include
andexclude
are empty * Ifinclude
andexclude
have overlapping elements * If any kind of string dtype is passed in.
See also
DataFrame.dtypes
Return Series with the data type of each column.
Notes
To select all numeric types, use
np.number
or'number'
To select strings you must use the
object
dtype, but note that this will return all object dtype columnsSee the numpy dtype hierarchy
To select datetimes, use
np.datetime64
,'datetime'
or'datetime64'
To select timedeltas, use
np.timedelta64
,'timedelta'
or'timedelta64'
To select Pandas categorical dtypes, use
'category'
To select Pandas datetimetz dtypes, use
'datetimetz'
(new in 0.20.0) or'datetime64[ns, tz]'
Examples
>>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0
>>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False
>>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0
>>> df.select_dtypes(exclude=['int64']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0
This docstring was copied from pandas.core.frame.DataFrame.