10 minutes to xorbits.pandas#

This is a short introduction to xorbits.pandas which is originated from pandas’ quickstart.

Customarily, we import and init as follows:

In [1]: import xorbits

In [2]: import xorbits.numpy as np

In [3]: import xorbits.pandas as pd

In [4]: xorbits.init()

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [6]: s
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing an array, with a datetime index and labeled columns:

In [7]: dates = pd.date_range('20130101', periods=6)

In [8]: dates
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df
Out[10]: 
                   A         B         C         D
2013-01-01 -0.895370  2.126507  0.630915  1.413850
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-03  0.142932  0.468562  0.218185 -0.220462
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-05  0.608089  1.220280  1.379540 -1.271964
2013-01-06  0.189339 -0.450788  0.504877 -2.264019

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = pd.DataFrame({'A': 1.,
   ....:                     'B': pd.Timestamp('20130102'),
   ....:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': np.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A          float64
B    datetime64[s]
C          float32
D            int32
E           object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01 -0.895370  2.126507  0.630915  1.413850
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-03  0.142932  0.468562  0.218185 -0.220462
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-05  0.608089  1.220280  1.379540 -1.271964

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-05  0.608089  1.220280  1.379540 -1.271964
2013-01-06  0.189339 -0.450788  0.504877 -2.264019

Display the index, columns:

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() gives a ndarray representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and ndarray: ndarrays have one dtype for the entire ndarray, while DataFrames have one dtype per column. When you call DataFrame.to_numpy(), xorbits.pandas will find the ndarray dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesn’t require copying data.

In [18]: df.to_numpy()
Out[18]: 
array([[-0.89536986,  2.12650669,  0.63091484,  1.41384962],
       [-0.17143963, -2.01056185, -0.35342023,  0.42926772],
       [ 0.14293214,  0.46856241,  0.21818546, -0.22046165],
       [ 0.94319762,  0.31396544,  1.36601814,  0.96533004],
       [ 0.60808868,  1.2202805 ,  1.37953977, -1.27196401],
       [ 0.18933859, -0.45078809,  0.50487679, -2.26401882]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive.

In [19]: df2.to_numpy()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_numpy() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.136125  0.277994  0.624352 -0.158000
std    0.638055  1.422050  0.671670  1.396968
min   -0.895370 -2.010562 -0.353420 -2.264019
25%   -0.092847 -0.259600  0.289858 -1.009088
50%    0.166135  0.391264  0.567896  0.104403
75%    0.503401  1.032351  1.182242  0.831314
max    0.943198  2.126507  1.379540  1.413850

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01  1.413850  0.630915  2.126507 -0.895370
2013-01-02  0.429268 -0.353420 -2.010562 -0.171440
2013-01-03 -0.220462  0.218185  0.468562  0.142932
2013-01-04  0.965330  1.366018  0.313965  0.943198
2013-01-05 -1.271964  1.379540  1.220280  0.608089
2013-01-06 -2.264019  0.504877 -0.450788  0.189339

Sorting by values:

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-06  0.189339 -0.450788  0.504877 -2.264019
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-03  0.142932  0.468562  0.218185 -0.220462
2013-01-05  0.608089  1.220280  1.379540 -1.271964
2013-01-01 -0.895370  2.126507  0.630915  1.413850

Selection#

Note

While standard Python expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized xorbits.pandas data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A']
Out[23]: 
2013-01-01   -0.895370
2013-01-02   -0.171440
2013-01-03    0.142932
2013-01-04    0.943198
2013-01-05    0.608089
2013-01-06    0.189339
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows:

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01 -0.895370  2.126507  0.630915  1.413850
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-03  0.142932  0.468562  0.218185 -0.220462

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-03  0.142932  0.468562  0.218185 -0.220462
2013-01-04  0.943198  0.313965  1.366018  0.965330

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101']
Out[26]: 
A   -0.895370
B    2.126507
C    0.630915
D    1.413850
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']]
Out[27]: 
                   A         B
2013-01-01 -0.895370  2.126507
2013-01-02 -0.171440 -2.010562
2013-01-03  0.142932  0.468562
2013-01-04  0.943198  0.313965
2013-01-05  0.608089  1.220280
2013-01-06  0.189339 -0.450788

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]: 
                   A         B
2013-01-02 -0.171440 -2.010562
2013-01-03  0.142932  0.468562
2013-01-04  0.943198  0.313965

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]: 
A   -0.171440
B   -2.010562
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A']
Out[30]: -0.8953698607067291

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A']
Out[31]: -0.8953698607067291

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]: 
A    0.943198
B    0.313965
C    1.366018
D    0.965330
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to python:

In [33]: df.iloc[3:5, 0:2]
Out[33]: 
                   A         B
2013-01-04  0.943198  0.313965
2013-01-05  0.608089  1.220280

By lists of integer position locations, similar to the python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]: 
                   A         C
2013-01-02 -0.171440 -0.353420
2013-01-03  0.142932  0.218185
2013-01-05  0.608089  1.379540

For slicing rows explicitly:

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02 -0.171440 -2.010562 -0.353420  0.429268
2013-01-03  0.142932  0.468562  0.218185 -0.220462

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01  2.126507  0.630915
2013-01-02 -2.010562 -0.353420
2013-01-03  0.468562  0.218185
2013-01-04  0.313965  1.366018
2013-01-05  1.220280  1.379540
2013-01-06 -0.450788  0.504877

For getting a value explicitly:

In [37]: df.iloc[1, 1]
Out[37]: -2.010561845234837

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1]
Out[38]: -2.010561845234837

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0]
Out[39]: 
                   A         B         C         D
2013-01-03  0.142932  0.468562  0.218185 -0.220462
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-05  0.608089  1.220280  1.379540 -1.271964
2013-01-06  0.189339 -0.450788  0.504877 -2.264019

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01       NaN  2.126507  0.630915  1.413850
2013-01-02       NaN       NaN       NaN  0.429268
2013-01-03  0.142932  0.468562  0.218185       NaN
2013-01-04  0.943198  0.313965  1.366018  0.965330
2013-01-05  0.608089  1.220280  1.379540       NaN
2013-01-06  0.189339       NaN  0.504877       NaN

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean()
Out[41]: 
A    0.136125
B    0.277994
C    0.624352
D   -0.158000
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1)
Out[42]: 
2013-01-01    0.818975
2013-01-02   -0.526538
2013-01-03    0.152305
2013-01-04    0.897128
2013-01-05    0.483986
2013-01-06   -0.505148
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, xorbits.pandas automatically broadcasts along the specified dimension.

In [43]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [44]: s
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index')
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.857068 -0.531438 -0.781815 -1.220462
2013-01-04 -2.056802 -2.686035 -1.633982 -2.034670
2013-01-05 -4.391911 -3.779720 -3.620460 -6.271964
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min())
Out[46]: 
A    1.838567
B    4.137069
C    1.732960
D    3.677868
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them).

In [47]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

xorbits.pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating xorbits.pandas objects together with concat():

In [49]: df = pd.DataFrame(np.random.randn(10, 4))

In [50]: df
Out[50]: 
          0         1         2         3
0 -2.222102  0.089420  0.444085  0.497213
1 -2.419492  0.274049 -0.304995 -1.175190
2 -0.067044 -0.525800 -1.264446  0.960053
3 -0.143600 -0.340298  0.385199 -1.351128
4  2.121553  0.623916  0.647778 -0.646439
5 -1.113658 -2.215303 -0.083893  0.259849
6 -0.182575  0.161977  1.115416  0.809280
7  1.028048  0.685183 -0.740458  1.099633
8  0.026282  0.749932  0.451062  1.211574
9  0.635577  0.958059 -0.381735  1.822400

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: pd.concat(pieces)
Out[52]: 
          0         1         2         3
0 -2.222102  0.089420  0.444085  0.497213
1 -2.419492  0.274049 -0.304995 -1.175190
2 -0.067044 -0.525800 -1.264446  0.960053
3 -0.143600 -0.340298  0.385199 -1.351128
4  2.121553  0.623916  0.647778 -0.646439
5 -1.113658 -2.215303 -0.083893  0.259849
6 -0.182575  0.161977  1.115416  0.809280
7  1.028048  0.685183 -0.740458  1.099633
8  0.026282  0.749932  0.451062  1.211574
9  0.635577  0.958059 -0.381735  1.822400

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges.

In [53]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: pd.merge(left, right, on='key')
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: pd.merge(left, right, on='key')
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': np.random.randn(8),
   ....:                    'D': np.random.randn(8)})
   ....: 

In [64]: df
Out[64]: 
     A      B         C         D
0  foo    one -0.006975 -0.563461
1  bar    one -1.596581 -0.019810
2  foo    two -0.079158  0.409955
3  bar  three -0.376174  0.189913
4  foo    two -1.685014 -0.473401
5  bar    two -0.317097  0.925201
6  foo    one -0.674133 -0.987325
7  foo  three -1.948111  0.476968

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum()
Out[65]: 
                     B         C         D
A                                         
bar        onethreetwo -2.289852  1.095304
foo  onetwotwoonethree -4.393390 -1.137264

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum()
Out[66]: 
                  C         D
A   B                        
bar one   -1.596581 -0.019810
    three -0.376174  0.189913
    two   -0.317097  0.925201
foo one   -0.681107 -1.550786
    three -1.948111  0.476968
    two   -1.764172 -0.063446

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = pd.Series(np.random.randn(1000),
   ....:                index=pd.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <Axes: >
savefig/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <Axes: >

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f6c45045fa0>
savefig/frame_plot_basic.png

Getting data in/out#

CSV#

Writing to a csv file.

In [77]: df.to_csv('foo.csv')
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: pd.read_csv('foo.csv')
Out[78]: 
     Unnamed: 0          A         B          C          D
0    2000-01-01  -0.771442  1.000700   0.878125   2.056192
1    2000-01-02  -0.693299 -0.224015  -0.576945  -0.247457
2    2000-01-03   0.392360 -1.431820   1.180861   1.259017
3    2000-01-04   2.264389 -0.085838  -0.307007   0.538263
4    2000-01-05   3.226983  0.824098   1.046063  -0.515959
..          ...        ...       ...        ...        ...
995  2002-09-22  27.254041  6.937970  18.681139 -18.979443
996  2002-09-23  27.339197  5.966404  19.230130 -19.203582
997  2002-09-24  28.336219  6.241372  17.442813 -19.330066
998  2002-09-25  29.551700  5.160639  17.915526 -18.414204
999  2002-09-26  28.983247  5.327610  18.110839 -17.842912

[1000 rows x 5 columns]