10 minutes to xorbits.pandas#

This is a short introduction to xorbits.pandas which is originated from pandas’ quickstart.

Customarily, we import and init as follows:

In [1]: import xorbits

In [2]: import xorbits.numpy as np

In [3]: import xorbits.pandas as pd

In [4]: xorbits.init()

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [6]: s
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing an array, with a datetime index and labeled columns:

In [7]: dates = pd.date_range('20130101', periods=6)

In [8]: dates
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df
Out[10]: 
                   A         B         C         D
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903
2013-01-04  0.918839 -0.889056 -0.787589  0.125859
2013-01-05 -1.469828 -0.228817  0.491169 -0.117628
2013-01-06  1.387363 -0.062752 -1.168410  0.120743

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = pd.DataFrame({'A': 1.,
   ....:                     'B': pd.Timestamp('20130102'),
   ....:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': np.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A          float64
B    datetime64[s]
C          float32
D            int32
E           object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903
2013-01-04  0.918839 -0.889056 -0.787589  0.125859
2013-01-05 -1.469828 -0.228817  0.491169 -0.117628

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.918839 -0.889056 -0.787589  0.125859
2013-01-05 -1.469828 -0.228817  0.491169 -0.117628
2013-01-06  1.387363 -0.062752 -1.168410  0.120743

Display the index, columns:

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() gives a ndarray representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and ndarray: ndarrays have one dtype for the entire ndarray, while DataFrames have one dtype per column. When you call DataFrame.to_numpy(), xorbits.pandas will find the ndarray dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesn’t require copying data.

In [18]: df.to_numpy()
Out[18]: 
array([[ 0.14674894,  0.50999701,  0.92754719,  0.93836374],
       [ 0.34321006, -0.01085331,  0.32902911, -0.29837999],
       [ 0.49467495,  0.99866562, -0.47278159,  1.93090271],
       [ 0.91883899, -0.88905568, -0.78758909,  0.12585859],
       [-1.46982785, -0.22881734,  0.49116879, -0.11762769],
       [ 1.38736338, -0.06275176, -1.16841013,  0.12074287]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive.

In [19]: df2.to_numpy()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

备注

DataFrame.to_numpy() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.303501  0.052864 -0.113506  0.449977
std    0.975786  0.646142  0.817502  0.839919
min   -1.469828 -0.889056 -1.168410 -0.298380
25%    0.195864 -0.187301 -0.708887 -0.058035
50%    0.418943 -0.036803 -0.071876  0.123301
75%    0.812798  0.379784  0.450634  0.735237
max    1.387363  0.998666  0.927547  1.930903

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01  0.938364  0.927547  0.509997  0.146749
2013-01-02 -0.298380  0.329029 -0.010853  0.343210
2013-01-03  1.930903 -0.472782  0.998666  0.494675
2013-01-04  0.125859 -0.787589 -0.889056  0.918839
2013-01-05 -0.117628  0.491169 -0.228817 -1.469828
2013-01-06  0.120743 -1.168410 -0.062752  1.387363

Sorting by values:

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-04  0.918839 -0.889056 -0.787589  0.125859
2013-01-05 -1.469828 -0.228817  0.491169 -0.117628
2013-01-06  1.387363 -0.062752 -1.168410  0.120743
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-03  0.494675  0.998666 -0.472782  1.930903

Selection#

备注

While standard Python expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized xorbits.pandas data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A']
Out[23]: 
2013-01-01    0.146749
2013-01-02    0.343210
2013-01-03    0.494675
2013-01-04    0.918839
2013-01-05   -1.469828
2013-01-06    1.387363
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows:

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903
2013-01-04  0.918839 -0.889056 -0.787589  0.125859

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101']
Out[26]: 
A    0.146749
B    0.509997
C    0.927547
D    0.938364
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']]
Out[27]: 
                   A         B
2013-01-01  0.146749  0.509997
2013-01-02  0.343210 -0.010853
2013-01-03  0.494675  0.998666
2013-01-04  0.918839 -0.889056
2013-01-05 -1.469828 -0.228817
2013-01-06  1.387363 -0.062752

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]: 
                   A         B
2013-01-02  0.343210 -0.010853
2013-01-03  0.494675  0.998666
2013-01-04  0.918839 -0.889056

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]: 
A    0.343210
B   -0.010853
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A']
Out[30]: 0.14674893840817868

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A']
Out[31]: 0.14674893840817868

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3]
Out[32]: 
A    0.918839
B   -0.889056
C   -0.787589
D    0.125859
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to python:

In [33]: df.iloc[3:5, 0:2]
Out[33]: 
                   A         B
2013-01-04  0.918839 -0.889056
2013-01-05 -1.469828 -0.228817

By lists of integer position locations, similar to the python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]: 
                   A         C
2013-01-02  0.343210  0.329029
2013-01-03  0.494675 -0.472782
2013-01-05 -1.469828  0.491169

For slicing rows explicitly:

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01  0.509997  0.927547
2013-01-02 -0.010853  0.329029
2013-01-03  0.998666 -0.472782
2013-01-04 -0.889056 -0.787589
2013-01-05 -0.228817  0.491169
2013-01-06 -0.062752 -1.168410

For getting a value explicitly:

In [37]: df.iloc[1, 1]
Out[37]: -0.010853306036420134

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1]
Out[38]: -0.010853306036420134

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-02  0.343210 -0.010853  0.329029 -0.298380
2013-01-03  0.494675  0.998666 -0.472782  1.930903
2013-01-04  0.918839 -0.889056 -0.787589  0.125859
2013-01-06  1.387363 -0.062752 -1.168410  0.120743

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.146749  0.509997  0.927547  0.938364
2013-01-02  0.343210       NaN  0.329029       NaN
2013-01-03  0.494675  0.998666       NaN  1.930903
2013-01-04  0.918839       NaN       NaN  0.125859
2013-01-05       NaN       NaN  0.491169       NaN
2013-01-06  1.387363       NaN       NaN  0.120743

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean()
Out[41]: 
A    0.303501
B    0.052864
C   -0.113506
D    0.449977
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1)
Out[42]: 
2013-01-01    0.630664
2013-01-02    0.090751
2013-01-03    0.737865
2013-01-04   -0.157987
2013-01-05   -0.331276
2013-01-06    0.069236
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, xorbits.pandas automatically broadcasts along the specified dimension.

In [43]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [44]: s
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index')
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.505325 -0.001334 -1.472782  0.930903
2013-01-04 -2.081161 -3.889056 -3.787589 -2.874141
2013-01-05 -6.469828 -5.228817 -4.508831 -5.117628
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min())
Out[46]: 
A    2.857191
B    1.887721
C    2.095957
D    2.229283
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them).

In [47]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

xorbits.pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating xorbits.pandas objects together with concat():

In [49]: df = pd.DataFrame(np.random.randn(10, 4))

In [50]: df
Out[50]: 
          0         1         2         3
0  0.621128 -0.337973 -0.745655 -0.177982
1  0.769179  0.499170  0.231917  0.177169
2  0.965615 -0.455256  0.653178 -0.437557
3 -1.062973 -0.000431  0.270017 -0.762508
4  0.064100  0.740777  0.000655  0.031409
5 -2.291755 -0.542511  0.197584 -1.943454
6 -0.235656 -1.288441  0.329932 -0.601470
7 -0.216890  0.912030 -0.023210  0.629549
8  2.180131 -0.856475  0.823501 -0.252162
9 -0.161037 -1.537540 -0.547591 -1.162559

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: pd.concat(pieces)
Out[52]: 
          0         1         2         3
0  0.621128 -0.337973 -0.745655 -0.177982
1  0.769179  0.499170  0.231917  0.177169
2  0.965615 -0.455256  0.653178 -0.437557
3 -1.062973 -0.000431  0.270017 -0.762508
4  0.064100  0.740777  0.000655  0.031409
5 -2.291755 -0.542511  0.197584 -1.943454
6 -0.235656 -1.288441  0.329932 -0.601470
7 -0.216890  0.912030 -0.023210  0.629549
8  2.180131 -0.856475  0.823501 -0.252162
9 -0.161037 -1.537540 -0.547591 -1.162559

备注

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges.

In [53]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: pd.merge(left, right, on='key')
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: pd.merge(left, right, on='key')
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': np.random.randn(8),
   ....:                    'D': np.random.randn(8)})
   ....: 

In [64]: df
Out[64]: 
     A      B         C         D
0  foo    one  1.068893 -0.035675
1  bar    one  0.236103 -1.658646
2  foo    two  0.025028  0.034265
3  bar  three  1.103031 -0.222646
4  foo    two -0.029850 -0.465858
5  bar    two  0.781703 -0.167088
6  foo    one -0.694919 -0.670437
7  foo  three -0.573294  0.156498

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum()
Out[65]: 
                     B         C         D
A                                         
bar        onethreetwo  2.120836 -2.048380
foo  onetwotwoonethree -0.204143 -0.981208

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum()
Out[66]: 
                  C         D
A   B                        
bar one    0.236103 -1.658646
    three  1.103031 -0.222646
    two    0.781703 -0.167088
foo one    0.373974 -0.706113
    three -0.573294  0.156498
    two   -0.004822 -0.431594

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = pd.Series(np.random.randn(1000),
   ....:                index=pd.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <Axes: >
savefig/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <Axes: >

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f5b49ca77c0>
savefig/frame_plot_basic.png

Getting data in/out#

CSV#

Writing to a csv file.

In [77]: df.to_csv('foo.csv')
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: pd.read_csv('foo.csv')
Out[78]: 
     Unnamed: 0         A          B          C          D
0    2000-01-01 -0.008475   1.510711   0.851956  -0.008841
1    2000-01-02  0.812659   2.787078  -0.506546  -0.762796
2    2000-01-03  1.360920   2.033011  -0.329717   0.540186
3    2000-01-04  2.226712   3.620119  -0.897679   0.081344
4    2000-01-05  4.397129   3.483270  -0.142677  -0.639094
..          ...       ...        ...        ...        ...
995  2002-09-22 -3.038724 -22.546684 -29.614903  36.044764
996  2002-09-23 -3.342731 -24.292884 -29.059415  35.648857
997  2002-09-24 -5.861932 -24.100191 -28.591981  37.085480
998  2002-09-25 -4.247949 -24.921452 -30.735368  35.761904
999  2002-09-26 -5.797131 -24.266469 -28.616970  34.602231

[1000 rows x 5 columns]