xorbits.pandas.window.Rolling.sum#

Rolling.sum(*args, **kwargs)[源代码]#

Calculate the rolling sum.

参数
  • numeric_only (bool, default False (Not supported yet)) –

    Include only float, int, boolean columns.

    1.5.0(pandas) 新版功能.

  • engine (str, default None (Not supported yet)) –

    • 'cython' : Runs the operation through C-extensions from cython.

    • 'numba' : Runs the operation through JIT compiled code from numba.

    • None : Defaults to 'cython' or globally setting compute.use_numba

      1.3.0(pandas) 新版功能.

  • engine_kwargs (dict, default None (Not supported yet)) –

    • For 'cython' engine, there are no accepted engine_kwargs

    • For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False}

      1.3.0(pandas) 新版功能.

返回

Return type is the same as the original object with np.float64 dtype.

返回类型

Series or DataFrame

参见

pandas.Series.rolling

Calling rolling with Series data.

pandas.DataFrame.rolling

Calling rolling with DataFrames.

pandas.Series.sum

Aggregating sum for Series.

pandas.DataFrame.sum

Aggregating sum for DataFrame.

提示

See window.numba_engine and enhancingperf.numba for extended documentation and performance considerations for the Numba engine.

实际案例

>>> s = pd.Series([1, 2, 3, 4, 5])  
>>> s  
0    1
1    2
2    3
3    4
4    5
dtype: int64
>>> s.rolling(3).sum()  
0     NaN
1     NaN
2     6.0
3     9.0
4    12.0
dtype: float64
>>> s.rolling(3, center=True).sum()  
0     NaN
1     6.0
2     9.0
3    12.0
4     NaN
dtype: float64

For DataFrame, each sum is computed column-wise.

>>> df = pd.DataFrame({"A": s, "B": s ** 2})  
>>> df  
   A   B
0  1   1
1  2   4
2  3   9
3  4  16
4  5  25
>>> df.rolling(3).sum()  
      A     B
0   NaN   NaN
1   NaN   NaN
2   6.0  14.0
3   9.0  29.0
4  12.0  50.0

This docstring was copied from pandas.core.window.rolling.Rolling.