xorbits.pandas.interval_range(start=None, end=None, periods=None, freq=None, name: Hashable | None = None, closed: IntervalClosedType = 'right') IntervalIndex[source]#

Return a fixed frequency IntervalIndex.

  • start (numeric or datetime-like, default None) – Left bound for generating intervals.

  • end (numeric or datetime-like, default None) – Right bound for generating intervals.

  • periods (int, default None) – Number of periods to generate.

  • freq (numeric, str, Timedelta, datetime.timedelta, or DateOffset, default None) – The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ for datetime-like.

  • name (str, default None) – Name of the resulting IntervalIndex.

  • closed ({'left', 'right', 'both', 'neither'}, default 'right') – Whether the intervals are closed on the left-side, right-side, both or neither.

Return type


See also


An Index of intervals that are all closed on the same side.


Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resulting IntervalIndex will have periods linearly spaced elements between start and end, inclusively.

To learn more about datetime-like frequency strings, please see this link.


Numeric start and end is supported.

>>> pd.interval_range(start=0, end=5)  
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
              dtype='interval[int64, right]')

Additionally, datetime-like input is also supported.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),  
...                   end=pd.Timestamp('2017-01-04'))
IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
               (2017-01-03, 2017-01-04]],
              dtype='interval[datetime64[ns], right]')

The freq parameter specifies the frequency between the left and right. endpoints of the individual intervals within the IntervalIndex. For numeric start and end, the frequency must also be numeric.

>>> pd.interval_range(start=0, periods=4, freq=1.5)  
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              dtype='interval[float64, right]')

Similarly, for datetime-like start and end, the frequency must be convertible to a DateOffset.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),  
...                   periods=3, freq='MS')
IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
               (2017-03-01, 2017-04-01]],
              dtype='interval[datetime64[ns], right]')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

>>> pd.interval_range(start=0, end=6, periods=4)  
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
          dtype='interval[float64, right]')

The closed parameter specifies which endpoints of the individual intervals within the IntervalIndex are closed.

>>> pd.interval_range(end=5, periods=4, closed='both')  
IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
              dtype='interval[int64, both]')


This method has not been implemented yet. Xorbits will try to execute it with pandas.

This docstring was copied from pandas.